Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.486
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732037

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Imaging, Three-Dimensional , Microscopy, Confocal , Mitochondria , Humans , Mitochondria/metabolism , Microscopy, Confocal/methods , Imaging, Three-Dimensional/methods , Fluorescent Dyes/chemistry , Membrane Potential, Mitochondrial , Carbocyanines/chemistry , Rhodamines/chemistry
2.
Transl Vis Sci Technol ; 13(5): 5, 2024 May 01.
Article En | MEDLINE | ID: mdl-38713474

Purpose: The blood-retinal barrier (BRB) restricts the delivery of intravenous therapeutics to the retina, necessitating innovative approaches for treating retinal disorders. This study sought to explore the potential of focused ultrasound (FUS) to non-invasively deliver intravenously administered gold nanoparticles (AuNPs) across the BRB. FUS-BRB modulation can offer a novel method for targeted retinal therapy. Methods: AuNPs of different sizes and shapes were characterized, and FUS parameters were optimized to permeate the BRB without causing retinal damage in a rodent model. The delivery of 70-kDa dextran and AuNPs to the retinal ganglion cell (RGC) layer was visualized using confocal and two-photon microscopy, respectively. Histological and statistical analyses were conducted to assess the effectiveness and safety of the procedure. Results: FUS-BRB modulation resulted in the delivery of dextran and AuNPs to the RGC and inner nuclear layer. Smaller AuNPs reached the retinal layers to a greater extent than larger ones. The delivery of dextran and AuNPs across the BRB with FUS was achieved without significant retinal damage. Conclusions: This investigation provides the first evidence, to our knowledge, of FUS-mediated AuNP delivery across the BRB, establishing a foundation for a targeted and non-invasive approach to retinal treatment. The results contribute to developing promising non-invasive therapeutic strategies in ophthalmology to treat retinal diseases. Translational Relevance: Modifying the BRB with ultrasound offers a targeted and non-invasive delivery strategy of intravenous therapeutics to the retina.


Blood-Retinal Barrier , Gold , Metal Nanoparticles , Retinal Ganglion Cells , Animals , Gold/chemistry , Gold/administration & dosage , Retinal Ganglion Cells/cytology , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Dextrans/administration & dosage , Dextrans/chemistry , Drug Delivery Systems/methods , Rats , Microscopy, Confocal/methods , Male
3.
Folia Med (Plovdiv) ; 66(2): 282-286, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38690826

The diagnosis of intrathoracic non-tuberculous mycobacteriosis (NTM) is challenging. We report a case of a pediatric pulmonary NTM with endobronchial lesion and lymphadenitis in a child with HIV infection diagnosed by bronchoscopic biopsy, EBUS-TBNA and probe-based confocal laser endomicroscopy (pCLE). The pCLE showed a large number of highly fluorescent cells and zones of density and disorganized elastin fibers at alveolar areas. A combination of diagnostic endoscopic procedures is required to establish the diagnosis of NTM.


Bronchoscopy , Endoscopic Ultrasound-Guided Fine Needle Aspiration , HIV Infections , Microscopy, Confocal , Mycobacterium Infections, Nontuberculous , Humans , Bronchoscopy/methods , Child , Microscopy, Confocal/methods , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/pathology , Male , HIV Infections/complications , HIV Infections/pathology , Biopsy/methods
4.
Methods Mol Biol ; 2800: 167-187, 2024.
Article En | MEDLINE | ID: mdl-38709484

Analyzing the dynamics of mitochondrial content in developing T cells is crucial for understanding the metabolic state during T cell development. However, monitoring mitochondrial content in real-time needs a balance of cell viability and image resolution. In this chapter, we present experimental protocols for measuring mitochondrial content in developing T cells using three modalities: bulk analysis via flow cytometry, volumetric imaging in laser scanning confocal microscopy, and dynamic live-cell monitoring in spinning disc confocal microscopy. Next, we provide an image segmentation and centroid tracking-based analysis pipeline for automated quantification of a large number of microscopy images. These protocols together offer comprehensive approaches to investigate mitochondrial dynamics in developing T cells, enabling a deeper understanding of their metabolic processes.


Flow Cytometry , Microscopy, Confocal , Mitochondria , Single-Cell Analysis , T-Lymphocytes , Flow Cytometry/methods , Mitochondria/metabolism , Single-Cell Analysis/methods , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Microscopy, Confocal/methods , Animals , Image Processing, Computer-Assisted/methods , Humans , Mice , Mitochondrial Dynamics
5.
Methods Mol Biol ; 2787: 81-94, 2024.
Article En | MEDLINE | ID: mdl-38656483

Plant genetics plays a key role in determining root hair initiation and development. A complex network of genetic interactions therefore closely monitors and influences root hair phenotype and morphology. The significance of these genes can be studied by employing, for instance, loss-of-function mutants, overexpression plant lines, and fluorescently labeled constructs. Confocal laser scanning microscopy is a great tool to visually observe and document these morphological features. This chapter elaborates the techniques involved in handling of microscopic setup to acquire images displaying root hair distribution along the fully elongated zone of Arabidopsis thaliana roots. Additionally, we illustrate an approach to visualize early fate determination of epidermal cells in the root apical meristem, by describing a method for imaging YFP tagged transgenic plant lines.


Arabidopsis , Microscopy, Confocal , Plant Roots , Microscopy, Confocal/methods , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/cytology , Arabidopsis/genetics , Plants, Genetically Modified/genetics , Meristem/growth & development , Meristem/genetics
6.
Clin Oral Investig ; 28(5): 266, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652317

OBJECTIVES: Confocal laser endomicroscopy (CLE) is an optical method that enables microscopic visualization of oral mucosa. Previous studies have shown that it is possible to differentiate between physiological and malignant oral mucosa. However, differences in mucosal architecture were not taken into account. The objective was to map the different oral mucosal morphologies and to establish a "CLE map" of physiological mucosa as baseline for further application of this powerful technology. MATERIALS AND METHODS: The CLE database consisted of 27 patients. The following spots were examined: (1) upper lip (intraoral) (2) alveolar ridge (3) lateral tongue (4) floor of the mouth (5) hard palate (6) intercalary line. All sequences were examined by two CLE experts for morphological differences and video quality. RESULTS: Analysis revealed clear differences in image quality and possibility of depicting tissue morphologies between the various localizations of oral mucosa: imaging of the alveolar ridge and hard palate showed visually most discriminative tissue morphology. Labial mucosa was also visualized well using CLE. Here, typical morphological features such as uniform cells with regular intercellular gaps and vessels could be clearly depicted. Image generation and evaluation was particularly difficult in the area of the buccal mucosa, the lateral tongue and the floor of the mouth. CONCLUSION: A physiological "CLE map" for the entire oral cavity could be created for the first time. CLINICAL RELEVANCE: This will make it possible to take into account the existing physiological morphological features when differentiating between normal mucosa and oral squamous cell carcinoma in future work.


Microscopy, Confocal , Mouth Mucosa , Humans , Microscopy, Confocal/methods , Mouth Mucosa/diagnostic imaging , Mouth Mucosa/cytology , Male , Female , Middle Aged , Mouth Neoplasms/pathology , Mouth Neoplasms/diagnostic imaging
7.
Eur J Dermatol ; 34(1): 55-58, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38557459

Lichen striatus (LS), linear psoriasis (LPs), linear cutaneous lupus erythematosus (LCLE) and linear lichen planus (LLP) often have similar clinical manifestations, which makes clinical diagnosis with the naked eye difficult; therefore, they are easily misdiagnosed. The purpose of this study was to determine whether reflectance confocal microscopy (RCM) is helpful in differentiating between these four linear dermatoses in children. This retrospective study included 14 patients with LS, nine with LPs, eight with LCLE and 12 with LLP. All patients were analysed using RCM, and biopsies were collected from lesions previously imaged by RCM. For LS, the dermal papillary rings were partially absent, but when present, manifested with small, homogeneously round, bright cells and occasionally highly refractive plump cellular structures, aggregated in clusters. LPs exhibited dark cyst-like structures with small, bright, round cells aggregated at the epidermal level; at the dermal-epidermal junction, homogeneously distributed, enlarged, faint dermal papillary rings and numerous enlarged low-refractive canalicular structures were observed in the superficial dermis. LCLE and LLP exhibited similar manifestations, including epidermal disarray, almost total absence of dermal papillary rings, and various sized refractive structures densely distributed in the dermis. The key distinguishing features of LCLE were the different sized structures mainly clustered around hair follicles, while LLP demonstrated dense structures with a scattered distribution. RCM may be used to distinguish between the key features of LS, LPs, LCLE and LLP in children.


Keratosis , Lichen Planus , Psoriasis , Child , Humans , Retrospective Studies , Lipopolysaccharides , Epidermis/pathology , Lichen Planus/pathology , Keratosis/pathology , Psoriasis/pathology , Pruritus/pathology , Microscopy, Confocal/methods
8.
J Vis Exp ; (206)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38682901

Neural stem cells (NSCs) divide and produce newborn neurons in the adult brain through a process called adult neurogenesis. Adult NSCs are primarily quiescent, a reversible cell state where they have exited the cell cycle (G0) yet remain responsive to the environment. In the first step of adult neurogenesis, quiescent NSCs (qNSCs) receive a signal and activate, exiting quiescence and re-entering the cell cycle. Thus, understanding the regulators of NSC quiescence and quiescence exit is critical for future strategies targeting adult neurogenesis. However, our understanding of NSC quiescence is limited by technical constraints in identifying quiescent NSCs (qNSCs) and activated NSCs (aNSCs). This protocol describes a new approach to identify and enrich qNSCs and aNSCs generated in in vitro cultures by imaging NSC autofluorescence. First, this protocol describes how to use a confocal microscope to identify autofluorescent markers of qNSCs and aNSCs to classify NSC activation state using autofluorescence intensity. Second, this protocol describes how to use a fluorescent activated cell sorter (FACS) to classify NSC activation state and enrich samples for qNSCs or aNSCs using autofluorescence intensity. Third, this protocol describes how to use a multiphoton microscope to perform fluorescence lifetime imaging (FLIM) at single-cell resolution, classify NSC activation state, and track the dynamics of quiescent exit using both autofluorescence intensities and fluorescence lifetimes. Thus, this protocol provides a live-cell, label-free, single-cell resolution toolkit for studying NSC quiescence and quiescence exit.


Neural Stem Cells , Neural Stem Cells/cytology , Animals , Mice , Microscopy, Confocal/methods , Flow Cytometry/methods , Optical Imaging/methods , Neurogenesis/physiology
9.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38649185

Cell-to-cell communication via tunneling nanotubes (TNTs) is a challenging topic with a growing interest. In this work, we proposed several innovative tools that use red/near-infrared dye labeling and employ lifetime-based imaging strategies to investigate the dynamics of TNTs in a living mesothelial H28 cell line that exhibits spontaneously TNT1 and TNT2 subtypes. Thanks to a fluorescence lifetime imaging microscopy module being integrated into confocal microscopy and stimulated emission depletion nanoscopy, we applied lifetime imaging, lifetime dye unmixing, and lifetime denoising techniques to perform multiplexing experiments and time-lapses of tens of minutes, revealing therefore structural and functional characteristics of living TNTs that were preserved from light exposure. In these conditions, vesicle-like structures, and tubular- and round-shaped mitochondria were identified within living TNT1. In addition, mitochondrial dynamic studies revealed linear and stepwise mitochondrial migrations, bidirectional movements, transient backtracking, and fission events in TNT1. Transfer of Nile Red-positive puncta via both TNT1 and TNT2 was also detected between living H28 cells.


Cell Membrane Structures , Microscopy, Confocal , Mitochondria , Nanotubes , Nanotubes/chemistry , Humans , Microscopy, Confocal/methods , Mitochondria/metabolism , Cell Line , Cell Communication , Microscopy, Fluorescence/methods , Mitochondrial Dynamics
10.
Anal Chem ; 96(18): 7257-7264, 2024 May 07.
Article En | MEDLINE | ID: mdl-38664861

Confocal fluorescence imaging of fine structures of the cell membrane is important for understanding their biofunctions but is often neglected due to the lack of an effective method. Herein, we develop new amphiphilic rhodamine fluorescent probe RMGs in combination with basal imaging for this purpose. The probes show high signal-to-noise ratio and brightness and low internalization rate, making them suitable for imaging the fine substructures of the cell membrane. Using the representative probe RMG3, we not only observed the cell pseudopodia and intercellular nanotubes but also monitored the formation of migrasomes in real time. More importantly, in-depth imaging studies on more cell lines revealed for the first time that hepatocellular carcinoma cells secreted much more adherent extracellular vesicles than other cell lines, which might serve as a potential indicator of liver cells. We believe that RMGs may be useful for investigating the fine structures of the cell membrane.


Cell Membrane , Fluorescent Dyes , Rhodamines , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Humans , Cell Membrane/chemistry , Optical Imaging , Microscopy, Confocal/methods , Surface-Active Agents/chemistry
11.
PLoS One ; 19(4): e0300348, 2024.
Article En | MEDLINE | ID: mdl-38687705

The sarcomere is the fundamental contractile unit in skeletal muscle, and the regularity of its structure is critical for function. Emerging data demonstrates that nanoscale changes to the regularity of sarcomere structure can affect the overall function of the protein dense ~2µm sarcomere. Further, sarcomere structure is implicated in many clinical conditions of muscle weakness. However, our understanding of how sarcomere structure changes in disease, especially at the nanoscale, has been limited in part due to the inability to robustly detect and measure at sub-sarcomere resolution. We optimized several methodological steps and developed a robust pipeline to analyze sarcomere structure using structured illumination super-resolution microscopy in conjunction with commercially-available and fluorescently-conjugated Variable Heavy-Chain only fragment secondary antibodies (nanobodies), and achieved a significant increase in resolution of z-disc width (353nm vs. 62nm) compared to confocal microscopy. The combination of these methods provides a unique approach to probe sarcomere protein localization at the nanoscale and may prove advantageous for analysis of other cellular structures.


Sarcomeres , Single-Domain Antibodies , Sarcomeres/metabolism , Sarcomeres/ultrastructure , Single-Domain Antibodies/chemistry , Animals , Microscopy, Fluorescence/methods , Mice , Microscopy, Confocal/methods
12.
Microsc Microanal ; 30(2): 318-333, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38525890

Correlative light and electron microscopy (CLEM) methods are powerful methods that combine molecular organization (from light microscopy) with ultrastructure (from electron microscopy). However, CLEM methods pose high cost/difficulty barriers to entry and have very low experimental throughput. Therefore, we have developed an indirect correlative light and electron microscopy (iCLEM) pipeline to sidestep the rate-limiting steps of CLEM (i.e., preparing and imaging the same samples on multiple microscopes) and correlate multiscale structural data gleaned from separate samples imaged using different modalities by exploiting biological structures identifiable by both light and electron microscopy as intrinsic fiducials. We demonstrate here an application of iCLEM, where we utilized gap junctions and mechanical junctions between muscle cells in the heart as intrinsic fiducials to correlate ultrastructural measurements from transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM) with molecular organization from confocal microscopy and single molecule localization microscopy (SMLM). We further demonstrate how iCLEM can be integrated with computational modeling to discover structure-function relationships. Thus, we present iCLEM as a novel approach that complements existing CLEM methods and provides a generalizable framework that can be applied to any set of imaging modalities, provided suitable intrinsic fiducials can be identified.


Microscopy, Electron , Animals , Microscopy, Electron/methods , Gap Junctions/ultrastructure , Microscopy, Electron, Transmission/methods , Microscopy, Confocal/methods , Microscopy, Electron, Scanning/methods , Mice
14.
Pathologie (Heidelb) ; 45(3): 211-217, 2024 May.
Article De | MEDLINE | ID: mdl-38446176

BACKGROUND: Fluorescence-based confocal microscopy (FCM) can be used to create virtual H&E sections in real time. So far, FCM has been used in dermato-, uro-, and gynecopathology. FCM allows the creation of a completely digitized frozen section, which could potentially replace conventional frozen sections in the future. OBJECTIVE: The aim of the current work is to implement FCM technology as a component of fully digitized processes in the pathological workflow. For this purpose, the current use of FCM in liver transplant pathology will be extended to other disciplines such as urology and otorhinolaryngology. MATERIALS AND METHODS: The FCM technique continues to be used prospectively on native tissue samples from potential donor livers. Conventional frozen sections are used comparatively to virtual FCM scans. RESULTS: The data show a nearly perfect agreement for the detection of cholangitis, fibrosis, and malignancy, and a high level of agreement for, e.g., macrovesicular steatosis, inflammation, steatohepatitis, and necrosis between virtual FCM scans and conventional routine diagnostic frozen sections. CONCLUSION: Since the availability of time- and cost-intensive frozen section diagnostics in the context of transplant pathology in continuous operation (24/7) is now only established at very few university centers in Germany due to an increasing shortage of specialists, the use of FCM could be an important building block in the current process leading towards a fully digitized pathology workflow and should thus be extended to various disciplines.


Microscopy, Confocal , Microscopy, Confocal/methods , Humans , Liver Transplantation , Frozen Sections/methods , Microscopy, Fluorescence/methods , Liver/pathology , Liver/diagnostic imaging
15.
Sci Rep ; 14(1): 6784, 2024 03 21.
Article En | MEDLINE | ID: mdl-38514670

In this multi-center, assessor-blinded pilot study, the diagnostic efficacy of cCeLL-Ex vivo, a second-generation confocal laser endomicroscopy (CLE), was compared against the gold standard frozen section analysis for intraoperative brain tumor diagnosis. The study was conducted across three tertiary medical institutions in the Republic of Korea. Biopsy samples from newly diagnosed brain tumor patients were categorized based on location and divided for permanent section analysis, frozen section analysis, and cCeLL-Ex vivo imaging. Of the 74 samples from 55 patients, the majority were from the tumor core (74.3%). cCeLL-Ex vivo exhibited a relatively higher diagnostic accuracy (89.2%) than frozen section analysis (86.5%), with both methods showing a sensitivity of 92.2%. cCeLL-Ex vivo also demonstrated higher specificity (70% vs. 50%), positive predictive value (PPV) (95.2% vs. 92.2%), and negative predictive value (NPV) (58.3% vs. 50%). Furthermore, the time from sample preparation to diagnosis was notably shorter with cCeLL-Ex vivo (13 min 17 s) compared to frozen section analysis (28 min 28 s) (p-value < 0.005). These findings underscore cCeLL-Ex vivo's potential as a supplementary tool for intraoperative brain tumor diagnosis, with future studies anticipated to further validate its clinical utility.


Brain Neoplasms , Humans , Pilot Projects , Prospective Studies , Microscopy, Confocal/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Lasers
16.
Crit Rev Oncog ; 29(2): 53-63, 2024.
Article En | MEDLINE | ID: mdl-38505881

The protocol for treating locally advanced rectal cancer consists of the application of chemoradiotherapy (neoCRT) followed by surgical intervention. One issue for clinical oncologists is predicting the efficacy of neoCRT in order to adjust the dosage and avoid treatment toxicity in cases when surgery should be conducted promptly. Biomarkers may be used for this purpose along with in vivo cell-level images of the colorectal mucosa obtained by probe-based confocal laser endomicroscopy (pCLE) during colonoscopy. The aim of this article is to report our experience with Motiro, a computational framework that we developed for machine learning (ML) based analysis of pCLE videos for predicting neoCRT response in locally advanced rectal cancer patients. pCLE videos were collected from 47 patients who were diagnosed with locally advanced rectal cancer (T3/T4, or N+). The patients received neoCRT. Response to treatment by all patients was assessed by endoscopy along with biopsy and magnetic resonance imaging (MRI). Thirty-seven patients were classified as non-responsive to neoCRT because they presented a visible macroscopic neoplastic lesion, as confirmed by pCLE examination. Ten remaining patients were considered responsive to neoCRT because they presented lesions as a scar or small ulcer with negative biopsy, at post-treatment follow-up. Motiro was used for batch mode analysis of pCLE videos. It automatically characterized the tumoral region and its surroundings. That enabled classifying a patient as responsive or non-responsive to neoCRT based on pre-neoCRT pCLE videos. Motiro classified patients as responsive or non-responsive to neoCRT with an accuracy of ~ 0.62 when using images of the tumor. When using images of regions surrounding the tumor, it reached an accuracy of ~ 0.70. Feature analysis showed that spatial heterogeneity in fluorescence distribution within regions surrounding the tumor was the main contributor to predicting response to neoCRT. We developed a computational framework to predict response to neoCRT by locally advanced rectal cancer patients based on pCLE images acquired pre-neoCRT. We demonstrate that the analysis of the mucosa of the region surrounding the tumor provides stronger predictive power.


Colorectal Neoplasms , Neoplasms, Second Primary , Rectal Neoplasms , Humans , Neoadjuvant Therapy , Microscopy, Confocal/methods , Colonoscopy/methods , Colorectal Neoplasms/diagnosis , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy
17.
Cells ; 13(5)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38474343

PURPOSE: Chemical eye injury is an acute emergency that can result in vision loss. Neurotrophic keratitis (NK) is the most common long-term manifestation of chemical injury. NK due to alkali burn affects ocular surface health and is one of its most common causes. Here, we established a rabbit model of corneal alkali burns to evaluate the severity of NK-associated changes. MATERIAL METHODS: Alkali burns were induced in NZ rabbits by treating the cornea with (i) a 5 mm circular filter paper soaked in 0.75 N NaOH for 10 s (Mild NK) and (ii) trephination using a guarded trephine (5 mm diameter and 150-micron depth), followed by alkali burn, with a 5 mm circular filter paper soaked in 0.75 N NaOH for 10 s (a severe form of NK). Immediately after, the cornea was rinsed with 10 mL of normal saline to remove traces of NaOH. Clinical features were evaluated on Day 0, Day 1, Day 7, Day 15, and Day 21 post-alkali burn using a slit lamp, Pentacam, and anterior segment optical coherence tomography (AS-OCT). NK-like changes in epithelium, sub-basal nerve plexus, and stroma were observed using in vivo confocal microscopy (IVCM), and corneal sensation were measured using an aesthesiometer post alkali injury. After 21 days, pro-inflammatory cytokines were evaluated for inflammation through ELISA. RESULTS: Trephination followed by alkali burn resulted in the loss of epithelial layers (manifested using fluorescein stain), extensive edema, and increased corneal thickness (550 µm compared to 380 µm thickness of control) evaluated through AS-OCT and increased opacity score in alkali-treated rabbit (80 compared to 16 controls). IVCM images showed complete loss of nerve fibers, which failed to regenerate over 30 days, and loss of corneal sensation-conditions associated with NK. Cytokines evaluation of IL6, VEGF, and MMP9 indicated an increased angiogenic and pro-inflammatory milieu compared to the milder form of NK and the control. DISCUSSION: Using clinical parameters, we demonstrated that the alkali-treated rabbit model depicts features of NK. Using IVCM in the NaOH burn animal model, we demonstrated a complete loss of nerve fibers with poor self-healing capability associated with sub-basal nerve degeneration and compromised corneal sensation. This pre-clinical rabbit model has implications for future pre-clinical research in neurotrophic keratitis.


Burns, Chemical , Corneal Diseases , Keratitis , Rabbits , Animals , Burns, Chemical/drug therapy , Alkalies , Sodium Hydroxide/therapeutic use , Cornea , Microscopy, Confocal/methods , Cytokines
18.
Molecules ; 29(5)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38474655

In this research, we explore the synthesis of and characterize α-aminophosphonates derived from anthraquinone and benzanthrone, focusing on their fluorescence properties and potential applications in confocal laser scanning microscopy (CLSM). The synthesized compounds exhibit notable solvatochromic behavior, emitting fluorescence from green to red across various solvents. Spectroscopic analysis, including 1H-, 13C-, and 31P-NMR, FTIR, and mass spectrometry, confirms the chemical structures. The compounds' toxicity is evaluated using etiolated wheat sprouts, revealing varying degrees of impact on growth and oxidative damage. Furthermore, the study introduces these α-aminophosphonates for CLSM imaging of the parasitic flatworm Opisthorchis felineus, demonstrating their potential in visualizing biological specimens. Additionally, an X-ray crystallographic study of an anthraquinone α-aminophosphonate provides valuable structural insights.


Benz(a)Anthracenes , Opisthorchis , Organophosphonates , Animals , Crystallography, X-Ray , Organophosphonates/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Confocal/methods , Anthraquinones
19.
Microsc Microanal ; 30(2): 306-317, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38498601

The quantitative description of biological structures is a valuable yet difficult task in the life sciences. This is commonly accomplished by imaging samples using fluorescence microscopy and analyzing resulting images using Pearson's correlation or Manders' co-occurrence intensity-based colocalization paradigms. Though conceptually and computationally simple, these approaches are critically flawed due to their reliance on signal overlap, sensitivity to cursory signal qualities, and inability to differentiate true and incidental colocalization. Point pattern analysis provides a framework for quantitative characterization of spatial relationships between spatial patterns using the distances between observations rather than their overlap, thus overcoming these issues. Here we introduce an image analysis tool called Spatial Pattern Analysis using Closest Events (SPACE) that leverages nearest neighbor-based point pattern analysis to characterize the spatial relationship of fluorescence microscopy signals from image data. The utility of SPACE is demonstrated by assessing the spatial association between mRNA and cell nuclei from confocal images of cardiac myocytes. Additionally, we use synthetic and empirical images to characterize the sensitivity of SPACE to image segmentation parameters and cursory image qualities such as signal abundance and image resolution. Ultimately, SPACE delivers performance superior to traditional colocalization methods and offers a valuable addition to the microscopist's toolbox.


Image Processing, Computer-Assisted , Microscopy, Fluorescence , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Myocytes, Cardiac , Animals , Cell Nucleus , Spatial Analysis , RNA, Messenger/genetics , RNA, Messenger/analysis , Microscopy, Confocal/methods
20.
IEEE J Biomed Health Inform ; 28(5): 2879-2890, 2024 May.
Article En | MEDLINE | ID: mdl-38358859

Learning better representations is essential in medical image analysis for computer-aided diagnosis. However, learning discriminative semantic features is a major challenge due to the lack of large-scale well-annotated datasets. Thus, how can we learn a well-structured categorizable embedding space in limited-scale and unlabeled datasets? In this paper, we proposed a novel clustering-guided twin-contrastive learning framework (CTCL) that learns the discriminative representations of probe-based confocal laser endomicroscopy (pCLE) images for gastrointestinal (GI) tumor classification. Compared with traditional contrastive learning, in which only two randomly augmented views of the same instance are considered, the proposed CTCL aligns more semantically related and class-consistent samples by clustering, which improved intra-class tightness and inter-class variability to produce more informative representations. Furthermore, based on the inherent properties of CLE (geometric invariance and intrinsic noise), we proposed to regard CLE images with any angle rotation and CLE images with different noises as the same instance, respectively, for increased variability and diversity of samples. By optimizing CTCL in an end-to-end expectation-maximization framework, comprehensive experimental results demonstrated that CTCL-based visual representations achieved competitive performance on each downstream task as well as more robustness and transferability compared with existing state-of-the-art SSL and supervised methods. Notably, CTCL achieved 75.60%/78.45% and 64.12%/77.37% top-1 accuracy on the linear evaluation protocol and few-shot classification downstream tasks, respectively, which outperformed the previous best results by 1.27%/1.63% and 0.5%/3%, respectively. The proposed method holds great potential to assist pathologists in achieving an automated, fast, and high-precision diagnosis of GI tumors and accurately determining different stages of tumor development based on CLE images.


Image Interpretation, Computer-Assisted , Microscopy, Confocal , Humans , Cluster Analysis , Microscopy, Confocal/methods , Image Interpretation, Computer-Assisted/methods , Gastrointestinal Neoplasms/diagnostic imaging , Gastrointestinal Neoplasms/pathology , Algorithms , Machine Learning
...